Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 32(8): e2707, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35808937

RESUMO

Arthropod biomass is a key element in ecosystem functionality and a basic food item for many species. It must be estimated through traditional costly field sampling, normally at just a few sampling points. Arthropod biomass and plant productivity should be narrowly related because a large majority of arthropods are herbivorous, and others depend on these. Quantifying plant productivity with satellite or aerial vehicle imagery is an easy and fast procedure already tested and implemented in agriculture and field ecology. However, the capability of satellite or aerial vehicle imagery for quantifying arthropod biomass and its relationship with plant productivity has been scarcely addressed. Here, we used unmanned aerial vehicle (UAV) and satellite Sentinel-2 (S2) imagery to establish a relationship between plant productivity and arthropod biomass estimated through ground-truth field sampling in shrub steppes. We UAV-sampled seven plots of 47.6-72.3 ha at a 4-cm pixel resolution, subsequently downscaling spatial resolution to 50 cm resolution. In parallel, we used S2 imagery from the same and other dates and locations at 10-m spatial resolution. We related several vegetation indices (VIs) with arthropod biomass (epigeous, coprophagous, and four functional consumer groups: predatory, detritivore, phytophagous, and diverse) estimated at 41-48 sampling stations for UAV flying plots and in 67-79 sampling stations for S2. VIs derived from UAV were consistently and positively related to all arthropod biomass groups. Three out of seven and six out of seven S2-derived VIs were positively related to epigeous and coprophagous arthropod biomass, respectively. The blue normalized difference VI (BNDVI) and enhanced normalized difference VI (ENDVI) showed consistent and positive relationships with arthropod biomass, regardless of the arthropod group or spatial resolution. Our results showed that UAV and S2-VI imagery data may be viable and cost-efficient alternatives for quantifying arthropod biomass at large scales in shrub steppes. The relationship between VI and arthropod biomass is probably habitat-dependent, so future research should address this relationship and include several habitats to validate VIs as proxies of arthropod biomass.


Assuntos
Artrópodes , Animais , Biomassa , Ecossistema , Pradaria , Dispositivos Aéreos não Tripulados , Plantas
2.
Mol Phylogenet Evol ; 61(3): 671-6, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21835255

RESUMO

In response to climate changes that have occurred during Pleistocene glacial cycles, taxa associated to steppe vegetation might have followed a pattern of historical evolution in which isolation and fragmentation of populations occurred during the short interglacials and expansion events occurred during the long glacial periods, in contrast to the pattern described for temperate species. Here, we use molecular genetic data to evaluate this idea in a steppe bird with Palaearctic distribution, the little bustard (Tetrax tetrax). Overall, extremely low genetic diversity and differentiation was observed among eight little bustard populations distributed in Spain and France. Mismatch distribution analyses showed that most little bustard populations expanded during cooling periods previous to, and just after, the last interglacial period (127,000-111,000 years before present), when steppe habitats were widespread across Europe. Coalescent-based methods suggested that glacial expansions have resulted in substantial admixture in Western Europe due to the existence of different interglacial refugia. Our results are consistent with a model of evolution and genetic consequences of Pleistocene cycles with low between-population genetic differentiation as a result of short-term isolation periods during interglacials and long-term exchange during glacial periods.


Assuntos
Aves/genética , Ecossistema , Camada de Gelo , Migração Animal , Animais , França , Fluxo Gênico/genética , Variação Genética , Genética Populacional , Geografia , Nucleotídeos/genética , Densidade Demográfica , Espanha , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...